FACHARTIKEL

VERGLEICH VON TREIBSTOFFEN UND ANTRIEBSSYSTEMEN

Bernd Ahlers

ZUSAMMENFASSUNG

Die Mobilitätsbedürfnisse steigen, während die Ressourcen schrumpfen. Alternative Kraftstoffe sind notwendig, um den CO2-Ausstoß des Verkehrs zu reduzieren. Biokraftstoffe der 3. Generation könnten eine nachhaltige Lösung sein, da sie die "Tank-Teller-Debatte" vermeiden und gleichzeitig die Nahrungsmittelversorgung sichern.

Einführung

Die steigenden Mobilitätsbedürfnisse der Menschen und die Endlichkeit der Rohstoffe werden dazu führen, dass alternative Kraftstoff- und Antriebsysteme schneller entwickelt werden müssen. Damit einhergehen erhebliche ökologische Herausforderungen. Die Politik hat auf nationaler und EU-Ebene verschiedene CO2-Reduktionsziele für den Verkehrssektor festgeschrieben.

Der Verkehr in Deutschland verursacht seit 2000 den größten Endenergieverbrauch. 2012 betrug dessen Anteil 28 %. Die verkehrsbedingten CO₂-Emissionen im Straßenverkehr sind nach Angaben des Umweltbundesamtes von 144,5 Mio. t im Jahr 2008 auf 147,9 Mio. t im Jahr 2011 angestiegen.

Aktuell wird überwiegend die E-Mobilität gefördert. Ob das der richtige Weg ist oder wir derzeit Bioenergieformen subventionieren, die die Treibhausgasemissionen am Ende erhöhen und nicht senken, wurde im Folgenden untersucht. Es ist an der Zeit, dass die Biokraftstoffkriterien auch auf Biomasse und alle Antriebssysteme ausgeweitet werden. Noch müssen nur Biokraftstoffe sich der zentralen Herausforderung "Tank-Teller-Debatte" stellen. Längst gibt es ein Verfahren "Biokraftstoff der 3. Generation", das diese Debatte überflüssig macht. Ein besonderer Schwerpunkt wurde in der Entwicklung darauf gelegt, dass die Produktion entlang der gesamten Wertschöpfungskette alle geforderten Kriterien weit übertrifft, sowohl in der Vermeidung negativer Landnutzungsänderung als auch in der Sicherstellung der Nahrungsmittelversorgung.

Die "Biokraftstoff-Nachhaltigkeitsverordnung" (Biokraft-NachV) beinhaltet verbindliche Nachhaltigkeitskriterien für Biokraftstoffe und Vorgaben zum Nachweis der Nachhaltigkeit. Die EU-Richtlinie 2009/28/EG für erneuerbare Energien gibt vor, wie hoch die Treibhausgasminderungen von Biotreibstoffen im Vergleich zu fossilen Kraftstoffen ausfallen müssen.

Die Reduktionsziele der EU lauten:

- Bis 2016: 35 % = max. 54,0 g CO_{2eq}/MJ (Gramm CO_2 Äquivalent pro Mega Joule)
- Ab 2017: 50 % = max. 41,9 g CO_{2eq}/M
- Ab 2018: 60 % = max. 33,5 g CO_{2eq}/MJ

In dieser Untersuchung "Vergleich von Treibstoff en und Antriebssystemen" wurden Verbrauch, Nachhaltigkeit, Kosten und Infrastruktur von Biokraftstoffen und fossilen Treibstoffen verglichen. Aber auch der Elektroantrieb und die Bereitstellung der Primärenergie wurden unter gleichen Bedingungen der Nachhaltigkeitsverordnung (Biokraft-NachV) untersucht.

Der Vergleich der Systeme untersucht sowohl die "Tank to Wheel" als auch die "Well to Wheel"-Situation.

Grenzen der Energiebilanzen

Folgende Untersuchung durchleuchtet und vergleicht verschiedene konventionelle und alternative Treibstoffe und Antriebskonzepte: Einerseits vom Tank bis Rad, sogenannte "Tank to Wheel" (TTW) und andererseits von der Rohstoffgewinnung (Energieträger) bis Rad "Well to Wheel" (WTW) in Bezug auf:

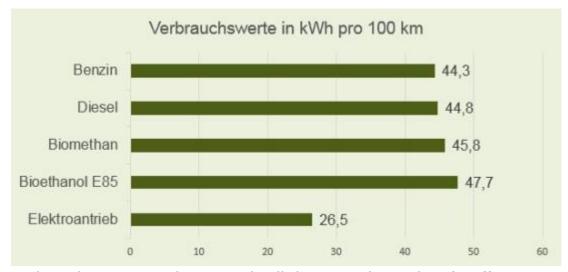
- 1. Energieverbrauch (TTW)
- 2. Energiegehalt
- 3. Energieverbrauch (WTW)
- 4. Wirtschaftlichkeit
- 5. CO₂-Emissionen
- 6. Infrastruktur

Aus der großen Anzahl von dargestellten Fahrzeugkonzepten werden im weiteren Verlauf dieser Untersuchung folgende Fahrzeugvarianten genauer beschrieben:

- Konventionelles Fahrzeug mit modernem Otto- und Dieselmotor
- Konventionelles Fahrzeug mit Verbrennungsmotor Bioethanol
- Konventionelles Fahrzeug mit Verbrennungsmotor Biomethan
- Batteriebetriebenes Elektrofahrzeug (Stromnetz)

Biodiesel wurde in die Untersuchung nicht mit einbezogen, da für Biodiesel ab 2015 gemäß den gesetzlichen Bedingungen der Biokraft-NachV und der indirekten Landnutzungsänderung (iLUC – Erneuerbare-Energien-Richtlinie, Renewable Energy Directive RED, 2009/28/EG) höchstwahrscheinlich noch keine praktischen Techniken zur Verfügung stehen, bzw. die Alternativen aus Algen- oder BtL-Kraftstoffe wirtschaftlich noch nicht wettbewerbsfähig sein werden.

Als Referenzfahrzeug diente der smart fortwo. Er ermöglicht zurzeit den objektivsten Vergleich zwischen konventionellen und alternativen Antrieben. Als einziges Model ist er serienmäßig mit drei verschiedenen Antriebskonzepten, als Benziner, Diesel und als

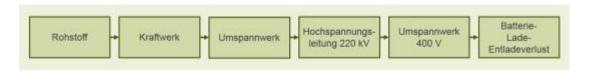

elektrisches Model, am Markt erhältlich. Die Messungen zum Verbrauch wurden unter Alltagsbedingungen bei unterschiedlichen Wetterbedingungen durchgeführt.

Antrieb	Leistung	Verbrauch pro 100 km
Benzin	52 kW	4,9
Diesel	40 kW	4,5
Elektromotor	35 kW (Nennleistung)	26,5 kWh
Bioethanol E85 (FFV)	52 kW	6,35 l
Biomethan	50 kW	7,9

Für die Berechnung der Verbrauchswerte dienten Angaben von Privatpersonen, eigenen Versuchsfahrten und Fachzeitschriften, z. B. Auto Motor Sport, Auto Bild und ADAC.

Energieverbrauch und Energiegehalt

In der folgenden Abbildung werden die durchschnittlichen Verbrauchswerte des smart fortwo in der "Tank to Wheel" (TTW) Situation dargestellt. Der Energieverbrauch wird einheitlich in streckenspezifischen Energieeinheiten kWh/100 km angegeben, da es sich um verschiedene Kraftstoffarten handelt.


Verbrauchswerte TTW der unterschiedlichen Antriebs- und Kraftstoffarten im smart fortwo

Beim direkten Vergleich der Verbrauchswerte sind die des elektrischen smart fortwo am niedrigsten. Anders als batteriebetriebene Antriebe führen Fahrzeuge mit Verbrennungsmotor ihre Primärenergie im Tank mit. Der Wirkungsgrad moderner Verbrennungsmotoren beträgt ca. 30 % – Die Abgase, Kühlung und mechanischer Abtrieb verbrauchen den Großteil der Energie. Die Testwerte für Biomethan und Bioethanol E85 wurden nach einem Umbau bzw. einer Nachrüstung des smart fortwo ermittelt. Energiegehalt

Beim batteriebetriebenen Elektrofahrzeug ergeben sich Verluste durch den Wirkungsgrad des Elektromotors und der Batterie beim Antreiben des Fahrzeuges. Die Energie aus dem Speicher (Batterie) wird somit mit einem Gesamtwirkungsgrad von ca. 63 % in mechanische Energie gewandelt ("Tank to Wheel"). Berücksichtigt man weiterhin den Wirkungsgrad beim Laden der Batterie aus dem Stromnetz (ca. 90 %), ergibt sich ein Wirkungsgrad von etwa 57 % für den Energiepfad "elektrische Speicher-Energie" zu "Radenergie". Die Energie für den "elektrischen Speicher" wird von batteriebetriebenen Fahrzeugen nicht mitgeführt, sondern "dezentral" erzeugt und mittels Stromleitungen zu den Batterien transportiert.

Im deutschen Stromnetz kommen verschieden Rohstoffe wie Braun- und Steinkohle, Öl und Erdgas, Atom-, Wind- und Solar-Anlagen zum Einsatz. Zu einem Großteil von ca. 80 % dienen fossile Rohstoffe zur Stromproduktion. Kohle- und Erdgas-Kraftwerke der neuesten Generation haben einen Wirkungsgrad von bis zu 47 %. Transformations- und Leitungsverluste reduzieren den Strom bis zu den Steckdosen im deutschen Stromnetz um weitere 12 %. Bis zu 75 % der Energie, die im Rohstoff enthalten ist, gehen auf dem Weg der Stromerzeugung zur Batterie "verloren".

Der Weg vom Rohstoff zur Batterie

Für eine Fahrstrecke von 100 km mit dem smart fortwo electric drive werden zum Beispiel für die Stromerzeugung mehr als 13 kg Kohle (Rohstoff), bzw. 106 kWh Energie benötigt. Flüssigtreibstoffe, ob Diesel, Otto- oder Biotreibstoffe, sind nicht ohne Verluste herzustellen. Die Rohstoffe haben einen langen Weg von der Förderstelle bis zur Tanksäule hinter sich.

Bei Dieselkraftstoff trägt der höhere Wirkungsgrad des Dieselmotors zur höheren Energieeffizienz verglichen mit dem Ottomotor bei, was sich im geringen

Kraftstoffverbrauch auswirkt. Bei Biomethan als Kraftstoff ist der Weg der Bereitstellung entscheidend.

In der folgenden Tabelle wird der Energiebedarf der verschiedenen Flüssigtreibstoffe, die bei Herstellung von einem Liter beansprucht werden, aufgeführt:

Kraftstoffart	Energiebedarf zur Herstellung kWh/l	Energiegehalt kWh/l	Energiebilanz kWh/l
Benzin	-5,42	9,03	+3,61
Diesel	-7,20	9,97	+2,77
Biomethan	-3,49	5,83	+2,34
Bioethanol E85	-2,64	7,63	+4,99

Quelle: BP, Berechnungen B. Ahlers

Die Tabelle zeigt den Energiegehalt der verglichenen Kraftstoffe, den Energiebedarf für die Bereitstellung sowie die Bilanzsumme der verschiedenen Flüssigkraftstoffe. Wenn nur der Energiegehalt der Kraftstoffe verglichen wird, ist der Dieselkraftstoff der uneingeschränkte Spitzenreiter. Es scheint, dass Diesel mit 9,97 kWh (35,87 MJ) pro Liter ca. 1/4 mehr Energie als Super E85 mit 7,63 kWh (27,45 MJ) der ideale Treibstoff für moderne Antriebskonzepte ist.

Energiebilanz mit Vorkette

Welche Emissionen in welchem Umfang im Straßenverkehr entstehen, hängt nicht nur vom Antriebskonzept der Fahrzeuge ab. Auch die verwendeten Energieträger und ihre gesamte Energiebilanz spielen eine wichtige Rolle. Das gilt speziell für Kohlendioxid, dem ein besonderer Anteil am vom Menschen verursachten Klimawandel zugeschrieben wird. Die folgende Tabelle gibt die Energiebilanz unter Berücksichtigung der Energievorketten von Flüssigkraftstoffen wieder, bezogen auf die Bereitstellung von 1 kWh "Brennstoff".

Kraftstoffart	Energiebedarf zur Herstellung kWh/l	Energiegehalt kWh/l	Energiebilanz kWh/l
Benzin	-0,60	1,00	+0,40
Diesel	-0,72	1,00	+0,28
Biomethan	-0,59	1,00	+0,41
Bioethanol E85	-0,34	1,00	+0,66

In der Diskussion um die effektivsten Kraftstoffe und Antriebskonzepte der Zukunft untersucht diese Studie auch die dazugehörigen "Vorketten", die zur Bereitstellung bzw. Herstellung der Kraftstoffe benötigt werden. Nur wenn alle Parameter von der Quelle bis zum Rad (Well to Wheel) gerechnet, bewertet und verglichen werden, ist eine objektive Beurteilung gegeben.

Energieverbrauch (WTW)

Die nächste Abbildung zeigt den Energieverbrauch kumuliert mit dem Energiebedarf aus den Vorketten auf einer Fahrstrecke von 100 km in kWh.

Energieverbrauch WTW der unterschiedlichen Antriebs- und Kraftstoffarten im smart fortwo

Durch den hohen Energiebedarf für die Bereitstellung von Dieselkraftstoff, verliert der Dieselmotor im indirekten WTW-Verbrauchsvergleich.

Der elektrisch angetriebene Motor, bedingt durch eine dezentrale Energieerzeugung und damit verbundenen Transformations- und Leitungsverlusten, kann seine Spitzenposition ohne Vorkette nicht einhalten.

Trotz des höchsten Verbrauchs an Treibstoff "Super E85", verbraucht ein Flexible Fuel Vehicle unter Well to Wheel (WTW) Bedingung die geringste Energie.

Gegenüber dem modernen Ottomotor-Fahrzeug kann der Dieselmotor auch in Zukunft Vorteile bezüglich Energieeffizienz geltend machen, jedoch beläuft sich dieser Vorteil auf lediglich 5 %. Analog zu dem Ottomotor-Fahrzeug kann die FFV-Technologie den größten Beitrag zur Verbrauchsreduzierung leisten und hat in diesem Vergleich den geringsten streckenbezogenen Energieverbrauch in Bezug auf die WTW-System-Betrachtung aufzuweisen.

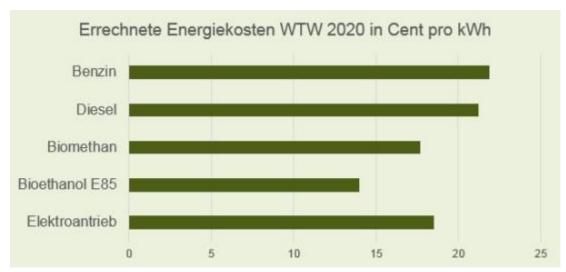
Wirtschaftlichkeit

In der Wirtschaftlichkeitsberechnung wurden Anschaffungskosten und Unterhalt nicht berücksichtigt. Elektroautos sind in der Anschaffung teurer als die Benziner, Diesel oder Fahrzeuge mit FFV-Technik. Die Ausrüstung der FFV-Modelle in der Serienproduktion verursacht Mehrkosten in Höhe von bis zu 60 €.

Ob sich die Unterschiede der Mehrkosten aus der Anschaffung amortisieren, hängt auch stark von der zukünftigen "Kraftstoffpolitik" der Bundesregierung ab. Die Wirtschaftlichkeit vergleicht nur die Kosten der Kraftstoffe im Verhältnis zum Aufwand.

Die Kennzahl Wirtschaftlichkeit zeigt somit an, wie effizient ein Kraftstoff ist: die Wirtschaftlichkeit erhöht sich, wenn die Kosten für eine definierte Größe kleiner ist oder der Aufwand bzw. die Kosten sinken. Die Wirtschaftlichkeit drückt das Ökonomische Prinzip (das entsprechend auch als Wirtschaftlichkeitsprinzip bezeichnet wird) in Zahlen aus. Folgende Abbildung stellt die aktuellen Kosten der Antriebsenergie (Stand: 30.08.2013) inklusive der Kosten aus der Vorkette (WTW) dar. Der Vergleich wird einheitlich in Energieeinheiten kWh, ohne Steuersätze, EEG-Umlage und Öko-Steuer angegeben, da es sich um verschiedene Kraftstoffarten und verschieden Steuersätze handelt.

Energiebezogene Preise der WTW Situation pro kWh ohne Steuerabgaben


Die fossilen Treibstoffe sind stark vom Rohölpreis abhängig. Die Biotreibstoffe unterliegen dem allgemeinen Agrarrohstoffindex. Die Strompreise werden maßgeblich vom Erneuerbaren Energie Gesetz (EEG), Ökostromabgaben, Netzgebühren und letztlich von den Rohstoffkosten für Kohle, Öl und Gas beeinflusst.

Steuersätze und andere Abgaben können von der Politik "beeinflusst" werden. Rohstoffkosten, insbesondere jene, die aus den endlichen Ölreserven konvertiert werden,

unterliegen den Weltmarktpreisen. Kontinuierlich steigende Nachfrage nach Rohstoffen wie Öl und Gas, werden einen steigenden Kraftstoffpreis an den Tankstellen unausweichlich machen. Die Energiesteuerrichtlinie der Bundesrepublik beinhaltet einen Mindeststeuersatz für elektrischen Strom und Energieerzeugnisse aus anderen Energiequellen als Mineralöl. Daher wurden im neuen Energiesteuergesetz weitere fossile Energieträger, d.h. Steinkohle, Braunkohle sowie Koks und Schmieröle aufgenommen. Gesondert wird Strom im Stromsteuergesetz geregelt. Zudem wird seit dem 1. Januar 2004 auch die Besteuerung von Biokraftstoffen im Mineralölsteuergesetz geregelt. Wirtschaftlichkeit 2020

Angesichts einer steigenden Nachfrage aus den schnell wachsenden Volkswirtschaften, einer sinkenden Förderleistung und zunehmender Explorationskosten, haben die Rohölpreise seit Anfang 2007 stark angezogen.


Errechnete Energiekosten WTW in Cent pro kWh im Jahr 2020

Aufgrund der anhaltenden Verbrauchszuwächse werden Rohstoffpreise in Zukunft tendenziell aufwärts gerichtet bleiben. In dieser Untersuchung werden Studien internationaler Organisationen sowie Informationen, die in den Terminmarktnotierungen enthalten sind, zur Ableitung von Szenarien in der obigen Abbildung für die Entwicklung der Treibstoffkosten bis zum Jahr 2020 herangezogen. Kosten der Antriebsenergie im Jahr 2020 inklusive der Vorkosten (WTW) werden einheitlich in Energieeinheiten kWh gerechnet, da es sich um verschiedene Kraftstoffarten handelt (ohne Steuersätze, EEG-Umlage und Öko-Steuer).

Tank to Wheel - Kosten

Tank-to-Wheel oder TTW, wörtlich: "vom Kraftstofftank bis zum Rad" betrachtet die Kostenkette von aufgenommener Energie (Kraftstoff, elektrische Energie) bis zur Umwandlung in kinetische Energie bei Kraftfahrzeugen. Es ist also nur ein Teilbereich der gesamten Energiekette (Well-to-Wheel) im Fahrzeugbetrieb, da die Bereitstellung der Antriebsenergie (Well-to-Tank) ausgeklammert wird.

Die nächste Abbildung vergleicht die aktuellen Treibstoffkosten in der Tank to Wheel Situation pro km Fahrstrecke bezogen auf die Treibstoffkosten pro 100 km zum Stand August 2013. Der Vergleich wird einheitlich auf Basis der Energieeinheiten kWh berechnet, da es sich um verschiedene Kraftstoffarten handelt. Die angegeben Preise enthalten keine Steuersätze, EEG- oder Öko- Umlagen.

Vergleich Treibstoffkosten TTW pro 100 km

Diesel und Benzin sind heute ohne Energiesteuer und Ökoumlage die kostengünstigsten Treibstoffe. Wie bereits beschrieben, ist mit steigenden Benzin- und Dieselpreisen zu rechnen. Im Jahr 2020 könnten sich die Preisvorteile für fossile Kraftstoffe zu Gunsten der biologischen Antriebsmittel verschieben.

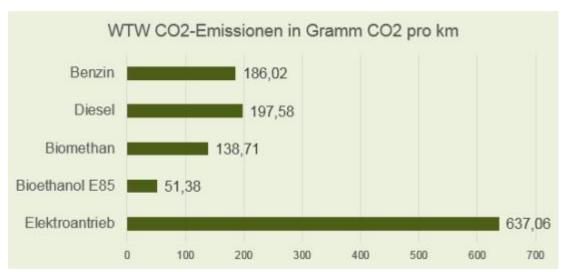
Darüber hinaus wird untersucht, inwiefern sich Änderungen der Rohölpreise auf die Benzin- und Dieselpreise auswirken. Es zeigt sich, dass die Treibstoffpreise bei gegebenen Steuern und Abgaben der Ölpreisentwicklung nahezu vollständig auch in den Vorlaufkosten für die Bereitstellung folgen. Kohle, Öl und das enge Substitut Gas stellen wichtige Primärenergieträger für die Stromerzeugung dar.

Liberalisierungsschritte in der europäischen Elektrizitätswirtschaft sowie ein hoher Einsatz regenerativer Energiequellen haben dazu geführt, dass für die Vergangenheit nur ein loser

Zusammenhang zwischen Öl- und Strompreisen in Deutschland nachgewiesen werden kann. Dennoch dürfte man von den anziehenden Kohle, Öl- und in deren Gefolge Gaspreisen künftig von einem Aufwärtsdruck auf die Strompreise ausgehen. Die nächste Abbildung basiert auf Hochrechnungen der Preisentwicklungen aus den letzten 10 Jahren. Verbesserungen der Anlagentechnik zur Herstellung von Biomethan und Bioethanol werden die Produktionskosten nachhaltig reduzieren.

Hochrechnung der Preisentwicklung TTW

CO2 Emmisionen


Kohlenstoffdioxid (CO₂) zählt zu den Treibhausgasen, die zum Treibhauseffekt beitragen und sowohl einen natürlichen als auch einen anthropogenen Ursprung haben können. Sie absorbieren einen Teil der vom Boden abgegebenen Infrarotstrahlung. Die Emissionen aus menschlicher Aktivität haben die Konzentration von CO₂ in der Erdatmosphäre seit Beginn der Industrialisierung von 280 ppm um knapp 40 % auf 390 ppm (2011) ansteigen lassen. Damit ist die gegenwärtige Konzentration höher als in den letzten 800.000 Jahren, wahrscheinlich auch höher als in den letzten 20 Mio. Jahren.

Kohlenstoffdioxid entsteht u.a. bei der Verbrennung fossiler Energieträger (Verkehr, Heizen, Stromerzeugung, Industrie). Der weltweite anthropogene CO₂-Ausstoß betrug im Jahr 2011 ca. 36.000.000.000 Tonnen (36 GT) und macht etwa 65 % des gesamten Ausstoßes des CO₂ aus. An den direkten CO₂-Emissionen des gesamten Verkehrsbereichs hat der Straßenverkehr in Deutschland einen Anteil von 85 %, der Pkw-Verkehr 60 %. Somit kommt dem Pkw eine große Bedeutung bei der Verringerung der CO₂-Emissionen zu. Trotz sparsamerer Motoren und der Verwendung von Bio-Kraftstoff stiegen 2010 die CO₂-Emissionen im Straßenverkehr wieder an. Insgesamt stießen Lkw und Pkw 145,4 Millionen

Tonnen des Klimagases aus. In offiziellen Statistiken werden nur die direkten CO₂-Emissionen dargestellt, die bei der Verbrennung der Kraftstoffe anfallen. Sogenannte "Tank to Wheel" (TTW) Emissionen. Die Kette der klimaschädlichen Emissionen beginnt aber schon bei der Gewinnung und Verarbeitung der Rohstoffe, die zu Kraftstoffen konvertiert und zu den Zapfsäulen oder E-Ladestation transportiert werden müssen.

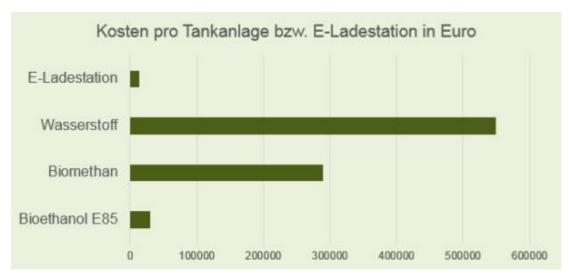
In der folgenden Abbildung werden auch die indirekten CO₂-Emissionen dargestellt, die "Well to Wheel" (WTW) Situation beschreiben.

WTW CO2-Emissionen von unterschiedlichen Antrieben am Beispiel vom smart fortwo

Die indirekten oder "grauen" CO₂-Emissionen, die bei der Herstellung von Kraftstoffen entstehen, müssen zu den direkten Emissionen addiert werden, da sie genau wie diese durch den Verbrauch verursacht werden. Für die Atmosphäre und das Klima spielt es keine Rolle, in welchem Land, bei welcher Vorkette CO₂-Emissionen in die Erdatmosphäre freigesetzt werden. Gerade auf dem Gebiet der grauen CO₂-Emissionen hat sich Anfang der 90er Jahre eine Trendwende vollzogen. Das Volumen der fossilen Rohstoffimporte (Öl, Gas, Kohle) ist im Zeitraum von 1985 – 2010 um rund 60 % angewachsen.

Infrastruktur

Voraussetzung für den breiten Einsatz von flüssig- und strombetriebenen Fahrzeuge ist die Bereitstellung einer entsprechenden Tankstelleninfrastruktur. Ende 2012 standen 14.336 Tankstellen für über 50 Mio. Fahrzeuge mit Verbrennungs- motor zur Verfügung. Unter Berücksichtigung der verfügbaren regenerativen Primärenergien und einer angestrebten maximalen CO₂-Minderung, müssen Ladestationen für Fahrzeuge mit Elektroantrieb, Tanksäulen für Super E85 und Biomethan installiert werden.



Bisherige Bemühungen alternative Antriebstechnologien voranzubringen seien "unkoordiniert und unzureichend" gewesen, schreibt die EU-Kommission in einem Strategiepapier. Aber das werde sich nun ändern – dafür soll das sogenannte Vorschlagspaket für saubere Energie für den Verkehr sorgen, teilte die Kommission in Brüssel am Anfang des Jahres mit.

Diese Maßnahmen sind darin vorgesehen:

- Konkrete Vorgaben für jedes EU-Land zum Bau von Elektrotankstellen bis zum Jahr 2020 – allein in Deutschland sollen in diesem Zeitraum 150.000 davon entstehen
- Ein europaweiter Standard für Ladestecker an Elektrotankstellen
- Ein dichtes Netz von CNG-Tankstellen (komprimiertes Erdgas), europaweit sollen bis 2020 höchstens 150 Kilometer zwischen zwei solcher Zapfstellen liegen
- Füllstationen für LNG (Flüssigerdgas) entlang wichtiger Routen in der EU im Abstand von höchstens 400 Kilometern
- Ausbau der Wasserstofftankstellen in ganz Europa sowie die Schaffung einheitlicher Normen, zum Beispiel für Füllschläuche

Die Kosten sind sehr unterschiedlich. In der nächsten Abbildung werden die Preisunterschiede für einzelne Ladestationen dargestellt. Müssen für eine Wasserstoffanlage über eine halbe Mio. Euro investiert werden, erhält man schon für knapp 14.000 Euro eine elektrische Ladestation. Biomethan-Tankanlagen liegen mit Preisen um 290.000 Euro im Mittelfeld der Kosten und bei einer Tankanlage für Super E85 belaufen sich die Kosten auf ca. 30.000 Euro.

Kosten für E-Ladestationen und Tankanlagen unterschiedlicher Kraftstoffe

Anders sehen die Kosten für eine flächendeckende Infrastruktur aus. Während für einige Millionen Fahrzeuge, die für Flüssigkraftstoffe (Biomethan/Bioethanol E85) geeignet sind,

wenige Tausend Stationen für eine flächendeckende Infrastruktur ausreichend sind, müssen für eine Million (1.000.000) Fahrzeuge mit E-Antrieb nach Vorgaben aus Brüssel min. 150.000 Ladestationen auf öffentlichen Flächen (Straßenraum) aufgestellt werden. Infrastruktur-Gesamtkosten

Die Gesamtkosten für die unterschiedlichen Antriebskonzepte werden in der Abbildung unterhalb anschaulich dargestellt.

Gesamtkosten für die flächendeckende Infrastruktur

Nach den Vorgaben aus Brüssel, soll für eine bessere Akzeptanz von E-Autos die Anzahl der Elektroladestationen in Deutschland bis 2020 auf 150.000 ausgebaut werden. Die Kosten von über 2 Mrd. Euro (2.000.000.000 €) müssen dann von allen Stromkunden über einen höheren Strompreis finanziert werden. Dagegen kann mit einer Investitionssumme um 50 Mio. Euro eine flächendeckende Infrastruktur für Bioethanol E85 aufgebaut werden.

Resümee und Zusammenfassung

Es ist paradox: Deutschland und die Kommission schmieden großen Pläne für mehr saubere Energie und verlieren dann kaum ein Wort über Nachhaltigkeit und Klimaschutz. Denn es bleibt auch offen, woher der Strom für die vielen Elektroladestationen kommen soll. Stammt er nicht aus regenerativen Quellen, bieten E-Mobile im Vergleich zu den herkömmlichen angetriebenen Autos keinen ökologischen Vorteil sondern sind für mehr Kohlenstoffdioxid, also CO₂-Emissionen, verantwortlich.

Der Anteil des Kohlenstoffdioxids im Deutschen Strommix betrug 2012 über 601 Gramm pro Kilowattstunde (601 g CO₂/kWh) ohne Anteil aus der "Ökostrom" Erzeugung. Mit

Einbezug der CO₂-Faktoren aus der Öko-Strom-Erzeugung liegen die Werte sogar bei 653 Gramm.

In der nächsten Abbildung werden die Anteile der CO₂-Emmisonen im deutschen Strommix aus konventioneller- und aus der Ökostromgewinnung dargestellt. Mit 325 Mio. t waren die CO₂-Emmisonen doppelt so hoch wie die der verkehrsbedingen CO₂-Belastungen.

CO2-Emissionen der Stromerzeugung aus konventionellen und erneuerbaren Energien 2012, Quelle: Umweltbundesamt, Öko-Institut e.V.

Durch Abschaltung einiger Atomkraftwerke (AKW) wurden konventionelle Kraftwerke, besonders Kohlekraftwerken, zur Sicherung der Stromversorgung "hochgefahren" (Volllaststunden), weitere Braun- und Steinkohlekraftwerke werden in den nächsten Jahren zusätzlich ans Netz gehen. Ein weiterer Anstieg der umweltschädlichen Kohlendioxid-Emissionen im Strommix ist dann unumgänglich.

Zusammenfassung

- FFVs (Flexible Fuel Vehicle) in Kombination mit Bioethanol E85 leisten heute schon, sowohl im TTW-, wie auch im WTW- Vergleich, einen hohen Beitrag zum Klimaschutz
- In der Energiebilanz gewinnt Bioethanol E85 den Vergleich
- Den Vergleich der Wirtschaftlichkeit gewinnt die Kombination FFV/Bioethanol E85
- Erst wenn in der deutschen Stromerzeugung ein Kohlendioxid-Anteil in Höhe von 180 Gramm pro erzeugter Kilowattstunde (180 g CO_{2eq}/kWh) erreicht ist, werden E-Autos einen Beitrag zum Klimaschutz leisten
- Die Kombination FFV/Bioethanol E85 übertrifft heute schon die für 2020 geforderten CO₂-Grenzwerte
- Beim Vergleich der Infrastrukturkosten liegen die Gesamtkosten der E-Ladesäulen mit Abstand am höchsten, Tankanlagen für Bioethanol E85 fallen am günstigsten aus

EU-Verordnung zur Verminderung der CO₂ – Emissionen von Personenkraftwagen Im Dezember 2008 haben sich Rat und Parlament auf eine Verordnung zur Minderung der CO₂-Emissionen bei neuen PKW geeinigt. Am 23. April 2009 wurde die Verordnung auch formell verabschiedet. Die Verordnung schafft einen verbindlichen Rechtsrahmen und gibt der Autoindustrie Planungssicherheit. Besonders wichtig ist, dass bis 2020 der CO₂-Ausstoß auf durchschnittlich 95 g/km gesenkt werden soll.

Die europäischen Vorgaben werden langfristig die Wettbewerbsfähigkeit alternativer Antriebssysteme steigern helfen, denn die Zukunft gehört effizienten Fahrzeugen – in Europa wie weltweit. Gegenüber dem ursprünglichen Kommissionsvorschlag enthält die Verordnung eine Reihe von Verbesserungen, die u.a. mittel- bis langfristig zu einer verstärkten Minderung der CO₂ – Emissionen führen werden.

Für jedes Fahrzeug, das so konstruiert ist, dass es mit einem Gemisch aus Ottokraftstoff und Bioethanol mit einem Bioethanolgehalt von 85 % (Super E85) betrieben werden kann, wird der CO₂ -Wert bis 31. Dezember 2015 um 5% verringert. Dadurch soll honoriert werden, dass beim Betrieb mit Biokraftstoffen ein größeres Potenzial hinsichtlich Technologie und Emissionsreduktion gegeben ist. Diese Reduktion gilt nur dann, wenn mindestens 30 % der Tankstellen in dem Mitgliedstaat, in dem das Fahrzeug zugelassen ist, diesen Typ alternativen Kraftstoffes anbieten, wobei dieser die Nachhaltigkeitskriterien für Biokraftstoffe nach den gemeinschaftlichen Rechtsvorschriften erfüllen muss.

VIELEN DANK FÜR IHR INTERESSE

Herzlichst, Bernd Ahlers

Weitere Informationen unter www.biotech-energy.de

